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Declarative memory is context dependent

Godden & Baddeley, British Journal of Psychology, 1975
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Transfer of learning between uni- and 
bimanual movements

Uni- learning

Uni- catch trial Bi- catch trial
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Godden & Baddeley, British Journal of Psychology, 1975
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Nozaki et al., Nature Neuroscience, 2006

Uni- learningBi- learning

Motor memory is context-dependent



Partially overlapping motor memories

片腕運動で左腕運動のスキル
を学習

両腕運動時の左腕運動にはス
キルの一部しか活用されない

C
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Difficulty in adapting to opposing force fields

Shadmehr et al., 2005

FF directions were 
changed according to 
the target color.
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Rightward force field (RF)

Uni Bi

Unimanual learning

Leftward force field (LF)

Uni Bi

Bimanual learning Very slow wash-out

片腕ー両腕運動交互

Adaptation to opposing force field 
with and without the opposite arm
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After the i-th bi- learning

uj(i + 1) = αuj(i)

bj(i + 1) = αbj(i) + ke(i)

e(i) = f −
Nb

∑
j=1

bj(i) +
No

∑
j=1

oj(i)

oj(i + 1) = αoj(i) + ke(i)

uj

oj

bj

State-space model

Neuronal element

After the i-th uni- learning

uj(i + 1) = αuj(i) + ke(i)

bj(i + 1) = αbj(i)

e(i) = f −
Nu

∑
j=1

uj(i) +
No

∑
j=1

oj

oj(i + 1) = αoj(i) + ke(i)
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Rightward force field (RF)

Uni Bi

Unimanual learning

Leftward force field (LF)

Uni Bi

Bimanual learning

Model prediction

Experimental result



The model reproduces very slow washout

Experiment Model prediction
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xj(i + 1) = αxj(i) + ke(i)

e(i) = f −
N

∑
j=1

xj(i)

X(i) =
N

∑
j=1

xj(i)

The number of elements matters

X(i + 1) = (α − Nk)X(i) + NkfError

Update

X(i) = (α − Nk)(i−1)C

The aftereffect 
decays more faster 
as the N is bigger.

Washout

C
N

Single trial adaptation

X(i) = 0 X(i + 1) = Nkf

Aftereffect induced by  the 
error is proportional to the N. 
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Target direction

Movement direction

Movement 
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Target direction

Movement 
direction

Deformation of visuomotor map

(Sensitivity Derivative; Hadjiosif et al., JNS 
2021; Lillicrap et al., EBR 2013; Abdelghani et 
al., Neural Comp 2018)

The deformation could influence the motor 
learning process itself?

Cursor

Visual rotation

Generalization

Generalization



Training target 
(30 deg visual rotation) Visuomotor map

Deformation of Visuomotor map



Quantifying movement correction to a 
visual error perturbation

Test target

Visuomotor map

Perturb. trial

Cursor
Hand

Probe trial

Aftereffect

Single trial adaptation



Visuomotor map

Deformation of VM map influences the 
movement correction sensitivity

Aftereffect Aftereffect



State space models

Conventional model

Theoretically, this model cannot 
explain our experimental results.

Li et al., Neuron 2001

New model with PD rotation

This new model takes into account 
the rotations of the PDs of the 
neural learning units.



The number of elements matters

Baseline

After adaptation to VM rotation

Training target



Adaptation to error

Movement change

The PD rotation provides a mechanism whereby the motor system 
can simultaneously learn how to move and learn how to learn 

Learn to learn
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Movement correction for a simple 
reaching movement

Rotation Correction
dc eb
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• The kinematics of movement and movement corrections 
are uniquely determined.
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• There is no redundancy in planar reaching movements 
that primarily involve the shoulder and elbow joints. 

Rotation Correction
dc eb

Rotation Correction
a

θ1

θ2

Cursor

Target

(xc, yc)

θ1

θ2

θ3
Cursor

Target



Rotation Correction
dc eb

Rotation Correction
a

θ1

θ2

Cursor

Target

(xc, yc)
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θ2

θ3
Cursor

Target

• How does the motor system coordinate the pattern of movement 
to correct for the perturbation to the end effector?

Correction

Task-relevant 
perturbation

Task-irrelevant 
perturbation

Movement correction for a 
redundant system

• Does the motor system correct the movement pattern even if the 
perturbation does not influence the performance?



Starting point
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H
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Bimanual stick-manipulation task

Starting point

Target
Parallel translation

H
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Cursor
(Tip)

Virtual stick

25 cm
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Tilting the stick

Kobayashi & Nozaki, eLife 2024

Manipulandum (KINARM)

This reaching task is redundant: The stick tilting angle is 
not uniquely determined.



Movement pattern
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Almost all participants performed this reaching task 
with the tip of the stick by tilting the stick.
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Visual space (monitor)

Physical space (actual hands)

Visible

Invisible

Invisible stick

Correcting pattern-i
Parallel translation

Correcting pattern-ii
Tilting the stick

Starting point Target

CMD
rotation

Perturbation:
rotate cursor-movement direction

Adaptation phase (Exp 1)
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Exp 1: Adaptation to tip-movement rotation

The tip rotation was gradually 
increased with trials (1 deg/
trial). Participants were not 
aware of the rotation.



Exp 1: Adaptation to tip-movement rotation
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The motor system implicitly changes the direction of the tip 
movement by tilting the stick as if it were aiming in that direction.
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Pattern-ii: Correct

Pattern-i: Ignore

Ignore the rotation

Pattern-ii: Correct

Pattern-i: Ignore

Correct the stick angle

Exp 2: Adaptation to stick rotation

Minimal intervention 
principle

Stick was rotated by 6 deg 
around the tip. Participants 
were not aware of the stick 
rotation.
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P < 0.05

P
 < 0.01

(Errorbars: SEM)
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Stick rotation was partially corrected, although the 
correction was not necessary.

Exp 2: Adaptation to stick rotation
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The unnecessary correction resulted in the task error.



CMD–STA plane in the physical space
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The motor system attempts to correct visual errors whether 
they are task-relevant or task-irrelevant.

Movement correction patterns in 
redundant systems 
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The physical correction patterns are constrained by the 
inherent relationship (i.e., TMD-STA relationship).



Exp 3: Adaptation to simultaneous 
application of tip rotation and stick rotation
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The adaptation was more delayed for E3CW group.

Exp 3: Adaptation to simultaneous 
application of tip rotation and stick rotation

Physical space

The task-irrelevant error information significantly 
influences how the task-relevant error is compensated.
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