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Declarative memory is context dependent

The effect of environmental context on retrieval
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Godden & Baddeley, British Journal of Psychology, 1975



Transfer of learning between uni- and
, bimanual movements
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Motor memory is context-dependent

The effect of environmental context on retrieval
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Partially overlapping motor memories

After uni- learning Transfer to bi- mov

After bi- learning  Transfer to uni- mov



Difficulty in adapting to opposing force fields

FF directions were
changed according to
the target color.
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Adaptation to opposing force field
with and without the opposite arm

Rightward force field (RF)
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State-space model

Perturba
tion

Motor command
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O Uni- null force AUni- catch @ Uni- with force
OBi- null force  ABiI-catch @ Bi- with force

Experimental result
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Normalized lateral deviation

The model reproduces very slow washout

Experiment
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The number of elements matters

N

Motor command  X(i) = Zx](l)
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decays more faster
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Single trial adaptation
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Visuomotor map
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Deformation of visuomotor map

Visual rotation
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The deformation could influence the motor
learning process itself?

(Sensitivity Derivative; Hadjiosif et al., JNS
2021; Lillicrap et al., EBR 2013; Abdelghani et
al., Neural Comp 2018)




Movement direction (°)

Deformation of Visuomotor map

Training target

(30 deg visual rotation) Visuomotor map
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Movement direciton (°)
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Quantifying movement correction to a
visual error perturbation
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Deformation of VM map influences the
movement correction sensitivity
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State space models

Conventional model

Perturbation Error

Motor
commands
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Neuronal learning units
(Motor primitives)

Update

Theoretically, this model cannot

explain our experimental results.
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New model with PD rotation

Perturbation Error
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Tuning function

Neuronal learning units
(Motor primitives) Li et al., Neuron 2001

This new model takes into account
the rotations of the PDs of the
neural learning units.



The number of elements matters

Training target
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L earn to learn

Perturbation Error

Motor
commands

"o PoRag— _
@@@@@ Adaptation to error

Neuronal learning units

cw (Motor primitives)

Update

PD rotation

60 - i /
5 /=
QEJ‘L, :
26 ,| - Movement change
€70
T £
o ©
L

__’
-60 £ — — .
CCwW -60 0 60 CW

Target direciton (°)

The PD rotation provides a mechanism whereby the motor system
can simultaneously learn how to move and learn how to learn
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Movement correction for a simple
reaching movement

*
*

Target Rotation Correction
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- There is no redundancy in planar reaching movements
that primarily involve the shoulder and elbow joints.

- The kinematics of movement and movement corrections
are uniquely determined.



Movement correction for a
redundant system

Target Rotation Correction

Cursor

Task-relevant | Task-irrelevant
perturbation perturbation

* How does the motor system coordinate the pattern of movement
to correct for the perturbation to the end effector?

* Does the motor system correct the movement pattern even if the
perturbation does not influence the performance?



Bimanual stick-manipulation task

Manipulandum (KINARM)
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This reaching task is redundant: The stick tilting angle is
not uniquely determined.

Kobayashi & Nozaki, eLife 2024
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Almost all participants performed this reaching task
with the tip of the stick by tilting the stick.



Exp 1: Adaptation to tip-movement rotation

Visual space (monitor)
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Exp 1: Adaptation to tip-movement rotation

(Errorbars: SD)

Gradual
rotation

Visual space (monitor)
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The motor system implicitly changes the direction of the tip
movement by tilting the stick as if it were aiming in that direction.



Exp 2: Adaptation to stick rotation
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Exp 2: Adaptation to stick rotation
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Stick rotation was partially corrected, although the

correction was not necessary.

The unnecessary correction resulted in the task error.



Movement correction patterns in
redundant systems
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The motor system attempts to correct visual errors whether
they are task-relevant or task-irrelevant.

The physical correction patterns are constrained by the
inherent relationship (i.e., TMD-STA relationship).



Exp 3: Adaptation to simultaneous
application of tip rotation and stick rotation
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Exp 3: Adaptation to simultaneous
application of tip rotation and stick rotation

Adaptation pattern for every 5 trials
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The adaptation was more delayed for

The task-irrelevant error information significantly
iInfluences how the task-relevant error is compensated.
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